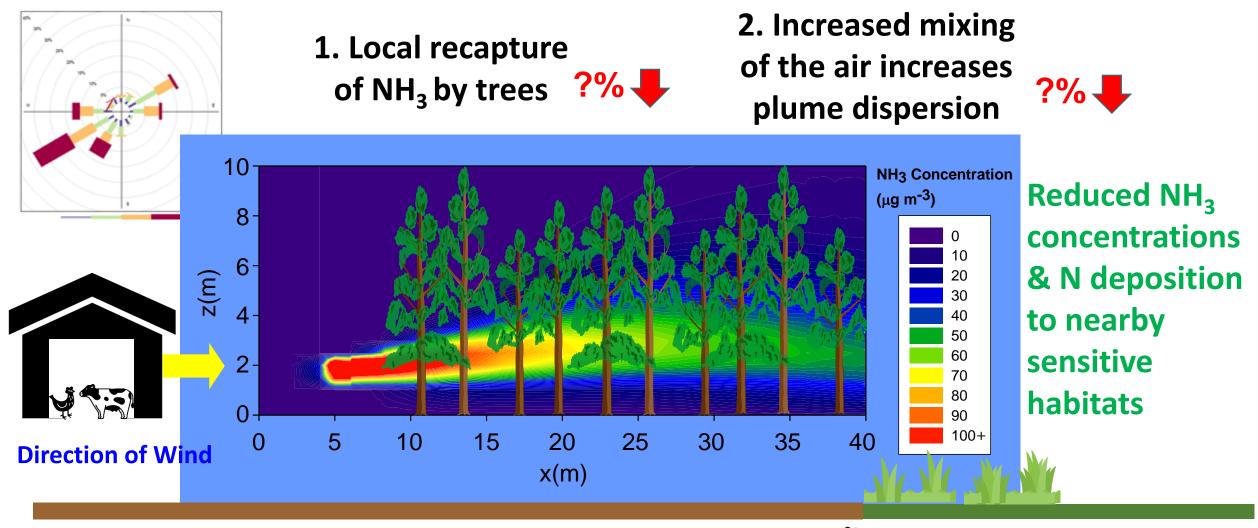
Ammonia Reduction from Trees (ART) – Field Experiments

lakesfreerange.co.uk

Tang Y.S., Braban C.F., Dick. J.D., Vanguelova E., Timmis R., Fisher B., Carnell, E., Martin *January 28th, 2022* Hernandez C., Arkle P., Brass, D., Gill, R., Davies R., Stephens A., Iwanicka A., Mullinger N.J., Cowan N., Simmons I., Jones R., Shutt M., Whyatt D., Benham S., Broadmeadow S., Mansfield P., and Bealey W.J.

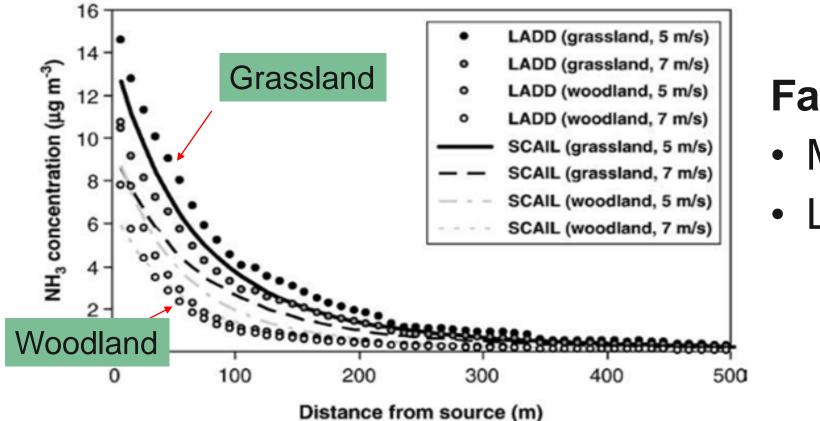

Programme

13.30	Welcome	Philippa Mansfield
13.35 - 14.20	ART field experiment results	
13.35 – 13.50	Field set up, ammonia monitoring and modelling	Sim Tang Bill Bealey
13.50 - 14.00	Tree measurements, lichen survey	Elena Vanguelova
14:00 - 14.10	Intensive measurements	Christine Braban
14.10 - 14.20	Directional Passive ammonia sampling	Roger Timmis
5 minute break		
14.25 – 14.30	Summary and Conclusions	Christine Braban
14.30 - 14.55	Q & A	All
14.55 – 15.00	Wrap up and Close	

EXPERIMENTAL DESIGN

Five case study farms: 3 poultry, 1 dairy, 1 mixed (dairy + poultry)							
 2-weekly NH₃ measurements (Aug - Nov 2020) and comparison with model predictions 	Sim Tang and Bill Bealey (UKCEH)						
 Tree parameters: Girth, height, LAI, N uptake Lichen Survey 	Elena Vanguelova (Forest Research)						
At a single farm: Poultry 3							
 Intensive measurements (17/09 – 18/11/20) Automatic NH₃, CO₂, CH₄ and PM On-site meteorology 	Christine Braban (UKCEH)						
 2-weekly directional NH₃ (17/09 – 11/11/20): Directional Passive Air Sampler (DPAS) with Mini-ANnular DEnuders (MANDE) 	Roger Timmis (EA)						

Ammonia Mitigation by Tree Shelterbelts



3. Recapture from livestock under trees 🍆

4?%

https://www.farmtreestoair.ceh.ac.uk/

Ammonia: concentration gradient downwind of sources

Factors:

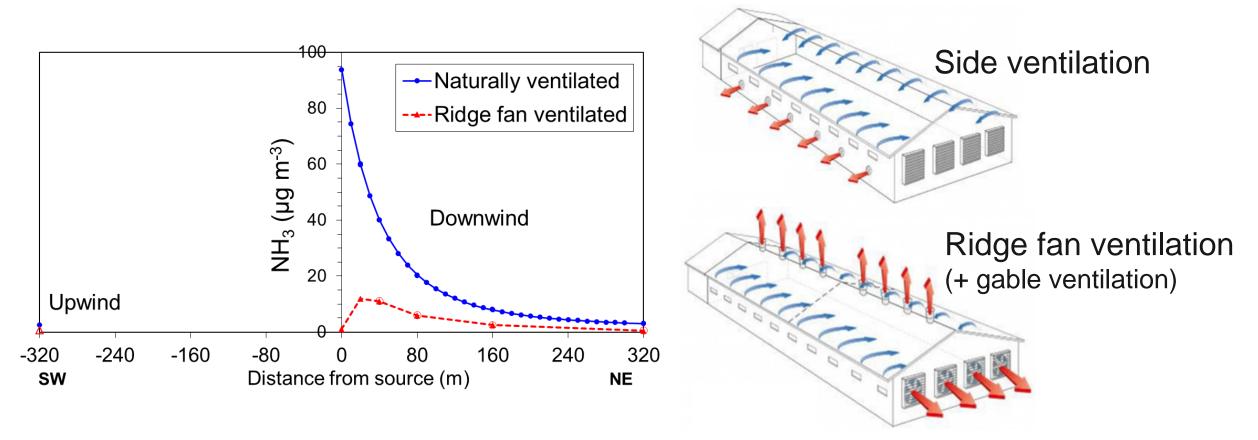
- Meteorology
- Landcover types

Example NH₃ concentration profiles from LADD and SCAIL models for different landcover types and wind speeds

(Theobald et al. Sci Total Env, 407(23), 6024-6033, 2009)

Ammonia Mitigation by Tree Shelterbelts

Stomatal uptake

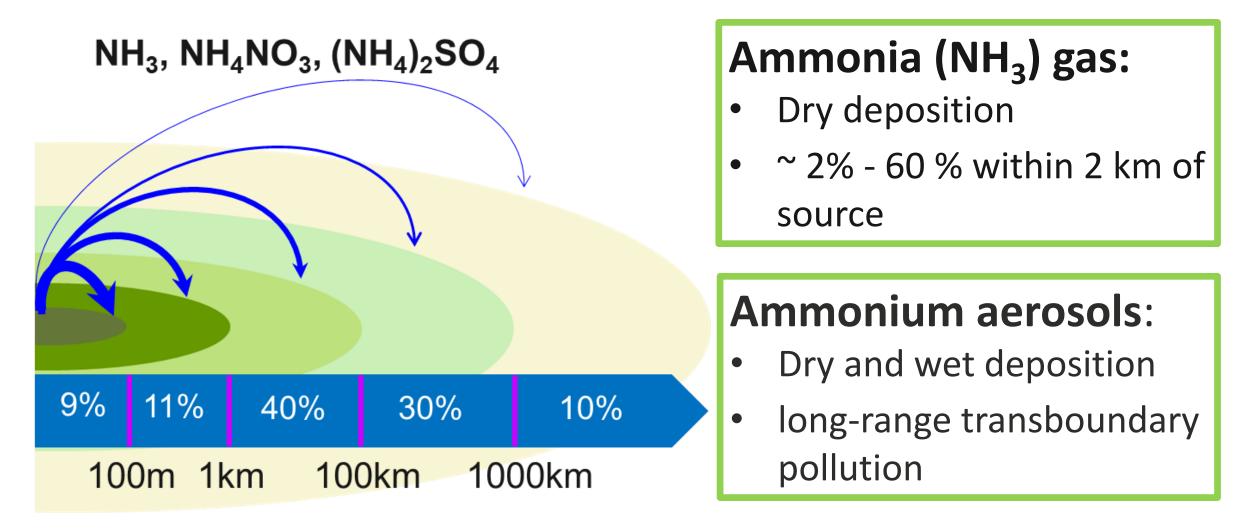

NH₃ enters leaves through stomata

NH3

Non-stomatal uptake to leaf cuticles, stems, soil or any other material

"Surface wetness" important

Ammonia: concentration gradient downwind of sources


Example NH₃ concentration profiles from ADMS model for two types of ventilation on poultry housing

Tang et al. 2004. UKPIR04

Factors:

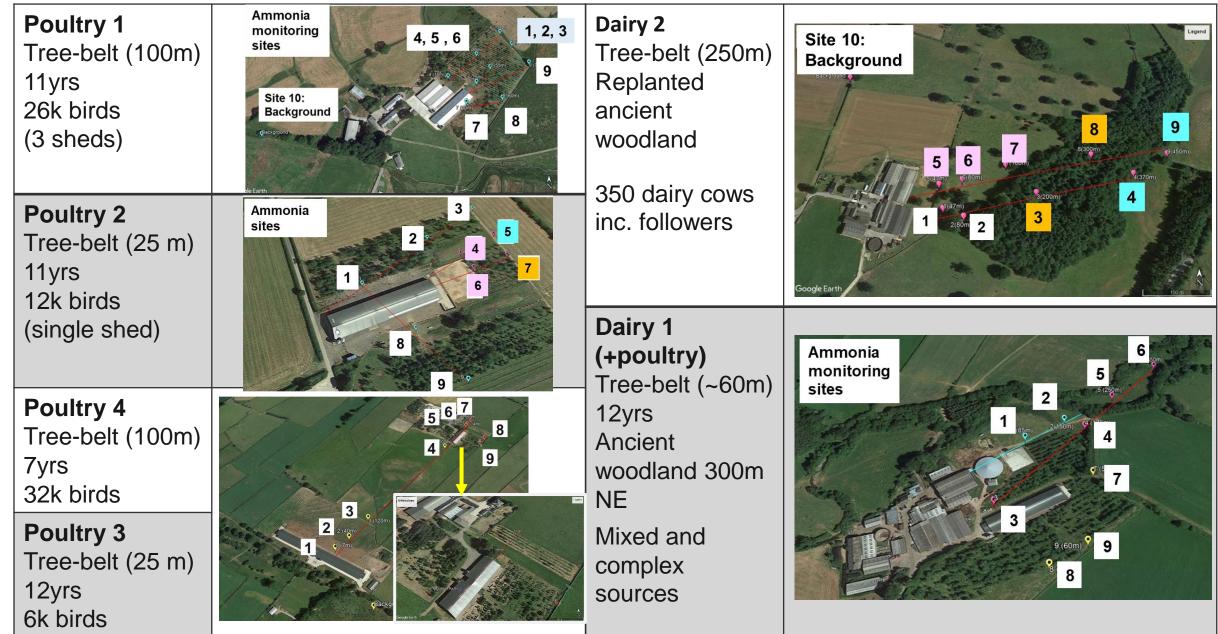
- Emission source height
- Exit velocity

Ammonia: deposition footprint

Reproduced from Hassouna and Eglin (2015)

5 case study farms 2-weekly ammonia measurements

Sim Tang (yst@ceh.ac.uk) Bill Bealey (bib@ceh.ac.uk) UKCEH



Case study farms

Ammonia ALPHA® Passive Samplers

UKCEH ALPHA® sampler

Passive sampler

- 2-weekly exposure
- LOD = $0.06 \ \mu g \ NH_3 \ m^{-3}$

UK Centre for Ecology & Hydrology

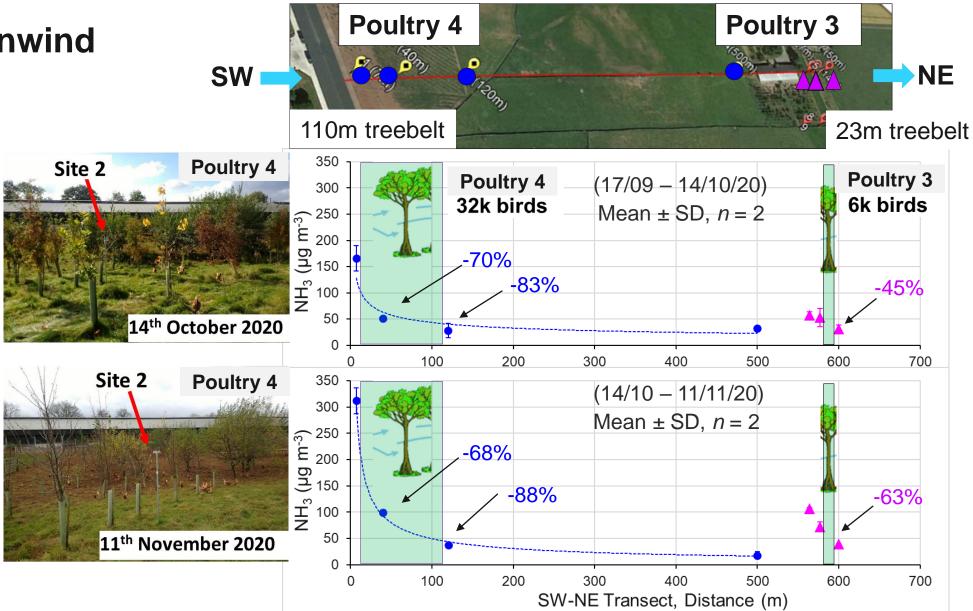
About us Science Data

CEH ALPHA® instruction manual

How to prepare a CEH ALPHA® sampler

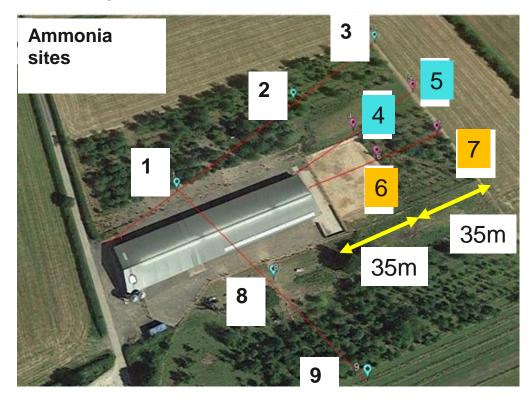
https://www.ceh.ac.uk/services/air-samplers#alpha

Monitoring strategy: Transects


Measurement (with trees)

VS

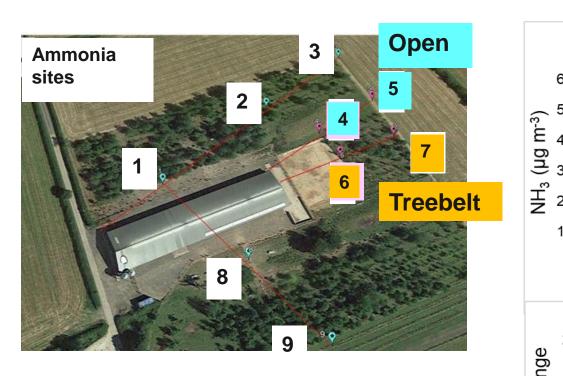
SCAIL model (no trees)


Hypothesis

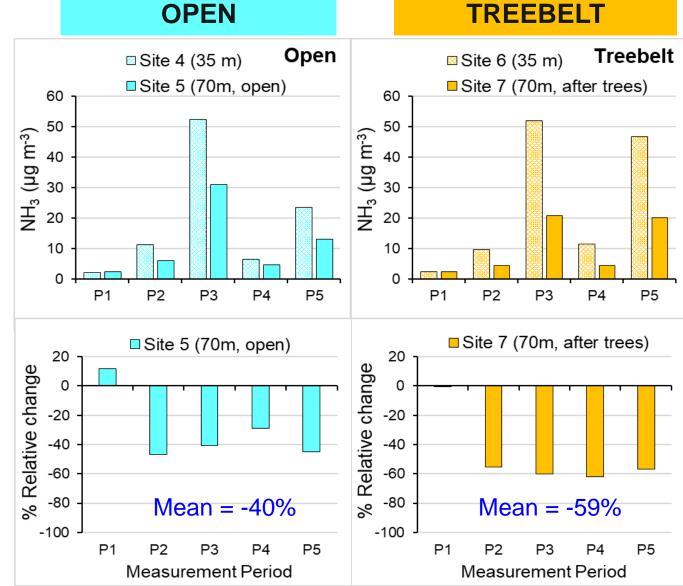
NH₃ reductions across treebelt = larger than Modelled (SCAIL – no trees)

Monitoring strategy: Open vs Treebelt

Poultry 2

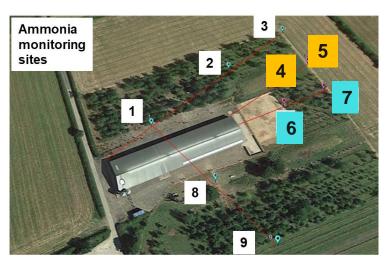


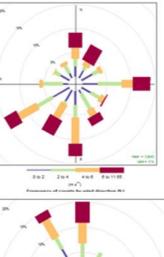
Paired measurements:


NO TREES4and5VS6and7

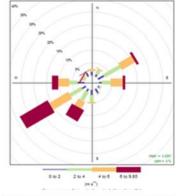
Hypothesis: Larger reduction in NH₃ between 6 and 7

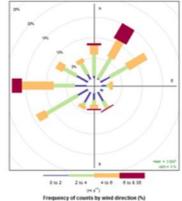
Monitoring strategy: Open vs Treebelt




Ammonia reduction across 35 m of treebelt: -19 % (p = 0.02)

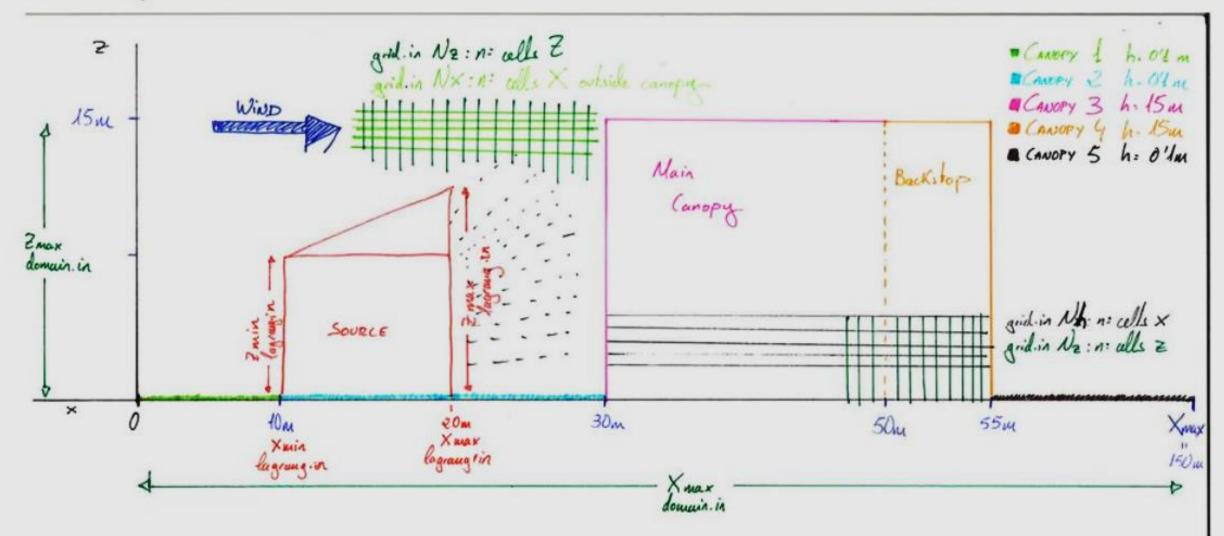
Poultry 2 – Measured vs Modelled (SCAIL)


Period	Sampling SCAIL ALPHA	ALPHA	SCAIL %	ALPHA %	SCAIL vs				
Period	Site	$\mu g NH_3 m^{-3}$	µgNH₃ m⁻³	reduction	reduction	ALPHA			
2	4	5.50	11.14	400/	470/	Difference			
2	5	2.79	5.92	49%	47%	<mark>-2%</mark>			
2	6	5.38	9.71	46%	F.69/	Difference			
2	7	2.91	4.32	40%	56%	10%			
3	4	9.77	52.42	F.00/	410/	Difference			
3	5	4.91	31.15	50%	41%	-9%			
3	6	10.11	52.10	47%	60%	Difference			
3	7	5.39	20.79	47%	00%	13%			
4	4	16.56	6.45	4.69/	200/	Difference			
4	5	9.02	4.60	46%	29%	-17%			
4	6	15.88	11.43	44%	62%	Difference			
4	7	8.90	4.34	44%	02%	18%			
5	4	9.64	23.57	40%	459/	Difference			
5	5	4.88	12.93	49%	45%	-4%			
5	6	10.99	46.85	170/	E 70/	Difference			
5	7	5.79	20.19	47%	57%	10%			



0 10 2 2 10 4 4 10 0 10 7.45

Frequency of counts by wind direction (%)

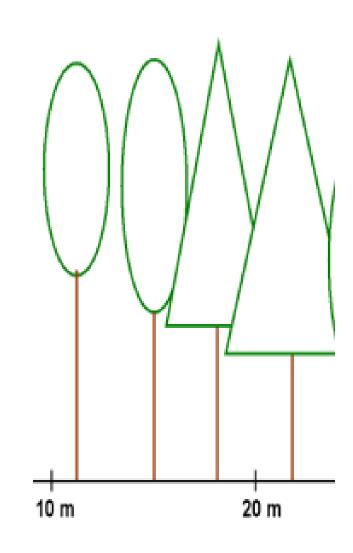


ALPHA[®] approach: 2-weekly measurements

Pros	Cons			
Does not require power	 Time-integrated average concentrations: source apportionment not possible Requires regular site visits to exchange samples Laboratory costs can be high 			
Easy to set up: post + shelter Locally trained person can change over				
samples				
Ideal for transects, spatial surveys 12 x monthly measurements to provide	Time delay between deployment and data			
annual mean concentrations – compare with Critical Levels of NH ₃ – with models (e.g. SCAIL)	Question: Can concentration measurements give a quantitative measure of ammonia reduction by tree shelterbelts?			

OpenFoam-MODDAS - Schema

Concept


Rationale for choices – vertical shape and Leaf Area Index (LAI)

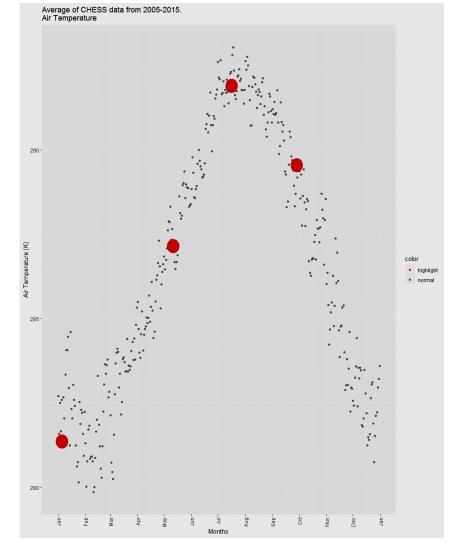
LAD - Vertical shape:

main canopy "lollipop" type (deciduous)backstop canopy "Christmas tree" type (conifer)

LAI:

- tree spacing (main 2.5m) and (backstop 2m)
- LAI timeseries (advice from FR)
- increases to a max at 15yrs, min at 25yrs and increases again to 50yrs
- given this variation in LAI chose years (5, 15, 25 and 50)
- tested seasonal versus annual average LAI for deciduous trees

Rationale for choices – season/time variation


Seasonal cycle:

- •4 time-points in the year to represent the seasonal cycle.
- 16th Jan, 11th May 14th July and 30th Sep

Diurnal variation:

- two time points (day, night)
- •air temperature: daily min/max
- relative humidity: calc depends on temp.
- solar radiation: imposed a cycle from position of the sun at the time of day (3am, 3pm)

Air Temperature

MODDAS Inputs/Outputs

INPUT DATA	Poultry 1 (Fans)	Poultry 1	Dairy 2	Poultry 2	Dairy 1 Dairy	Dairy 1 Poultry	Poultry 3	Poultry 4
Emission Strength (NH ₃ tonnes per year)	3480	4060	7774	3480	10366	4640	1740	9280
Height of shed (m)	5	3.6	4	3.6	4	3.6	3.6	3.6
Length of shed (m)	80	50	50	80	45	100	65	20
Area of Shed (m ²)	1630	1800	5836	1772	1350	2000	1270	4400
Distance from shed to main canopy (metres)	25	15	36	35	40	7	26	45
Main canopy depth (m)	100	137	330	33	170	36	23	65
Main Canopy Height (m)	5.04	5.04	16.1	5.66	6.11	6.11	5.36	2.57
Main Canopy LAI (From FR - excpt. Dairy1)	0.79	0.79	3.10	0.45	0.83	0.83	0.95	0.06
Backstop (m) NO BACKSTOP => single main canopy	0	0	0	0	0	0	0	0
RESULTS								
TOTAL Recapture	-1.0	-1.6	-80.6	-1.3	-4.2	-2.8	-1.7	-0.1

Uncertainty Analysis

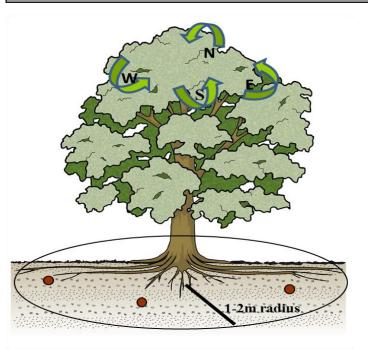
- •Ran MODDAS 100 times per sample and took average to ensure variation due to parameters
- •100,000 runs in all
- •Range of % recapture from 1000 sample 63%

Question: How can we improve uncertainty, especially through improved LAI by age of treebelt & by species

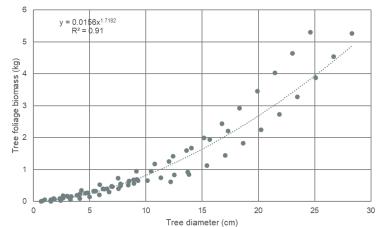
Title	Min	Mode	Max
Minimum Plant Cuticular Resistance s m ⁻¹	0	10	230
Response Coefficient Cuticular Resistance to RH	1	7	35
Minimum Stomatal Resistance s m ⁻¹	1	60	100
Response Coefficient Stomatal Aperture to PAR	1	7	35
Plant Emission Potential – Main H+/NH4+	3	1000	7000
Plant Emission Potential - Backstop H ⁺ /NH4 ⁺	3	20000	40000
Soil Emission Potential	20	13000	7000000

Ecosystem measurements: Assessing effects of NH₃ on trees

Elena Vanguelova (Elena.vanguelova@forestresearch.gov.uk) Forest Research

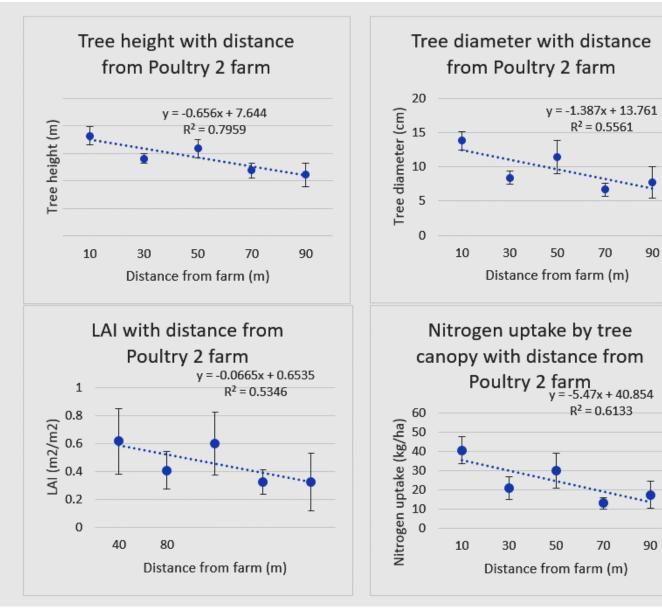

- Tree parameters: Girth, height, LAI, foliar nitrogen and chemistry, leaf area (FR)
- Lichen Survey (King's College, London)
- Leaf Area Index (LAI) was calculated by using:
- Measured Tree Specific Leaf Area (SLA) (m2/kg)
- Modelled tree canopy biomass (kg) using measured diameter(cm) and height (m) allometric relationships
- Tree density at farms (tree per ha)

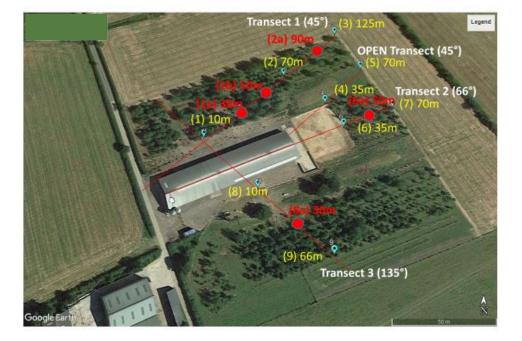
Leaf Area Index (LAI) = SLA x canopy biomass x tree density


- Canopy N uptake was calculated by using:
- Measured Foliar N concentration
- Modelled canopy biomass (kg)
- Tree density at farms (trees per ha)

Canopy N uptake = measured foliar N% x canopy biomass x tree density

Foliar sampling cardinal direction facing the farms


Soil and root sampling – 3 points per tree



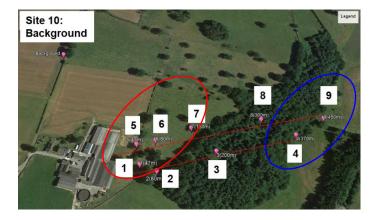
Relationship between tree diameter and tree foliage biomass

Diameter/canopy biomass allometric relationships were used to model canopy biomass as more accurate than tree height for younger trees (Zianis et al., 2005)

Poultry 2 - Ecology

- Tree height, diameter, LAI (Leaf Area Index) and canopy nitrogen uptake all decrease linearly with distance away from farm.
- Clear evidence of higher tree growth and carbon and double N capture by trees near the farms than further away.
- LAI is key for canopy N uptake calculations and NH₃ reduction models/tools. Need better tree allometric relationships, e.g. Age, time and tree species specific to reduce LAI and tree N uptake uncertainties.
- Next step to measure N capture/storage by soils along the transects.

Across all farms – variation in tree species parameters


Dairy 1 – Lichen Survey (Allan Pentecost, King's College London)

Xanthoria parietina from a birch branch - the most abundant and conspicuous N-tolerant species. Partially overgrown by a coccoid green alga, *Apatococcus*. *Physcia tenella.* A small grey foliose N-tolerant species that is often associated with the yellow *Xanthorias*,

Dairy 1 – Lichen Survey (Allan Pentecost, King's College London)

NAQI (Nitrogen Air Quality Index) NAQI 0 - 0.5, clean NAQI > 0.5-0.85, at N risks NAQI 0.86-1.25, N polluted NAQI > 1.25, very N polluted

LIS (Lichen Indicator Scores) On Oak and birch, but also on alder, larch, sycamore

NAQI – 1.14-1.59 N polluted to very N polluted

LIS – mostly N tolerant species

Sites 2, 3 and 8 situated adjacent to, or within woodland are more varied.

Findings across all farms

- Clear evidence that tree growth (diameter, height, LAI) is significantly higher nearer the farms and decline with distance away, likely due to the influence of ammonia concentrations.
- Tree uptake of nitrogen is up to double nearer the farms where ammonia emissions are higher compared to further away from the farms. Evidence for tree ammonia mitigation.
- Young age, fast growing tree species (with higher LAI) such as Poplar, Willow, Birch and Ash can take up significantly higher (at least double) amounts of nitrogen compared to slow growing tree species such as rowan, hazel, sycamore.
- Ø Tree height is a less variable measurement of tree growth compared to tree diameter at a young stage of tree growth. Thus, tree diameter is more representative parameter to be used in developing allometric relationships for models.
- Despite being young the tree shelterbelts show a clear potential for both nitrogen mitigation and higher carbon sequestration. Likely impacts of ammonia on lichens flora has been found.

Questions for further studies:

How aboveground N compares to belowground N capture, storage and cycling by different trees and soils?

What is the influence of N on carbon capture above and belowground?

What is the influence of N input on soil biodiversity, nitrogen leaching and soil GHG?

Poultry 3 farm Intensive measurements

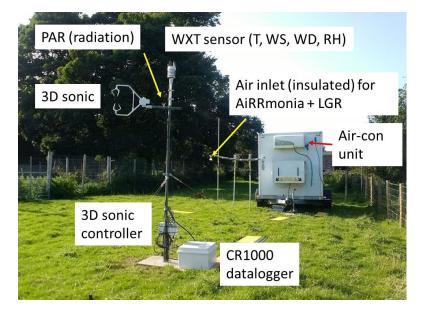
Christine Braban (chri2@ceh.a.uk) UKCEH

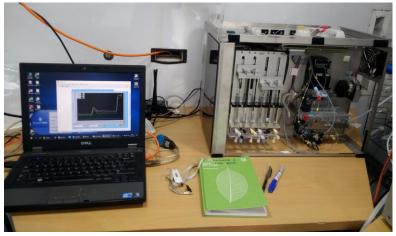
Intensive measurements at Poultry 3 farm

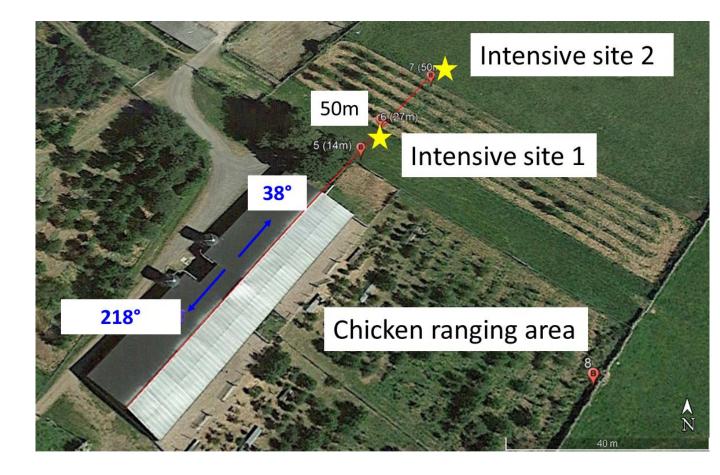
- Continuous real-time NH₃,CO₂, CH₄ and PM
- On-site meteorology
- Estimation of NH₃ reduction across tree belt

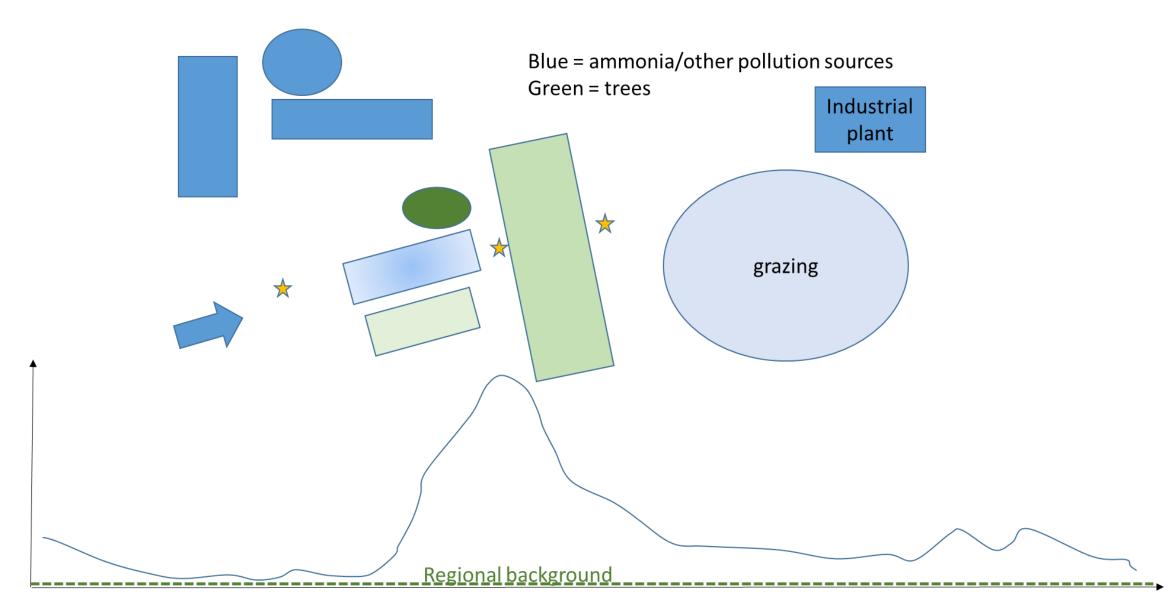
High time resolution measurements of NH₃

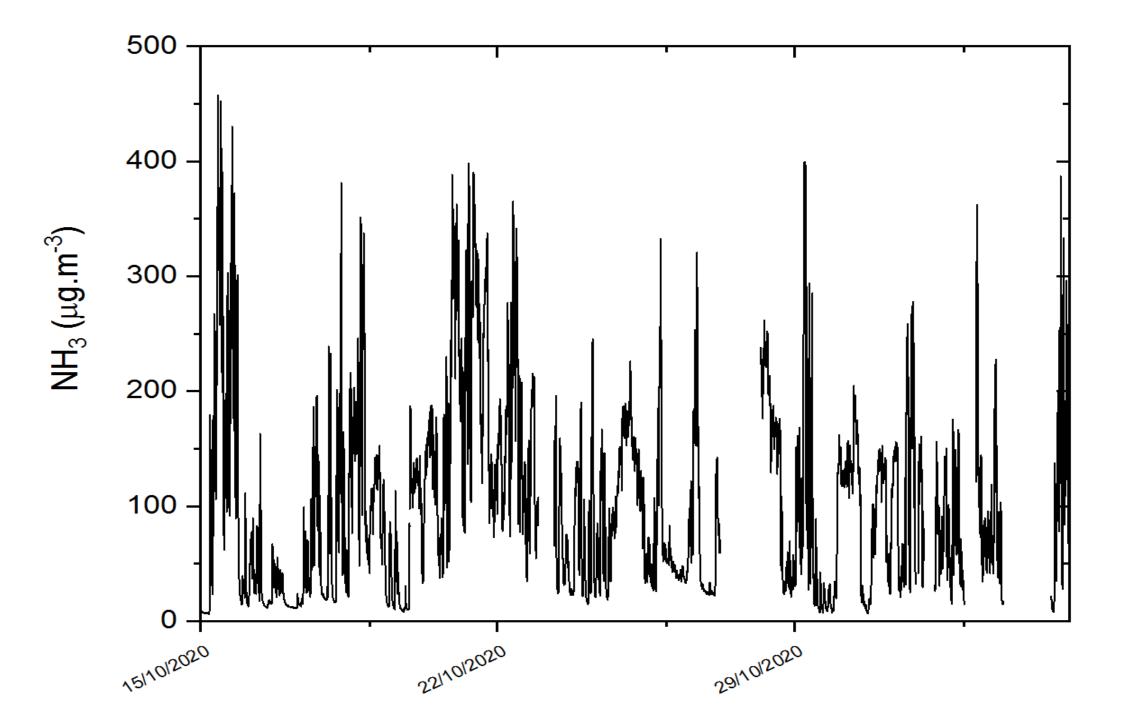
- •Visual interpretation of plumes and source apportionment
- Back-trajectory emissions modelling

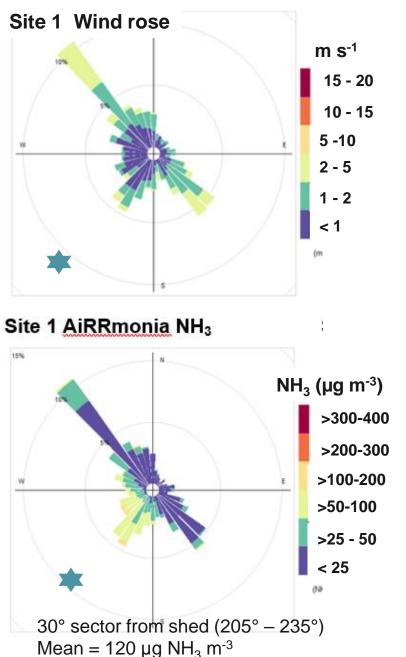

High resolution measurements of CH_4 and CO_2

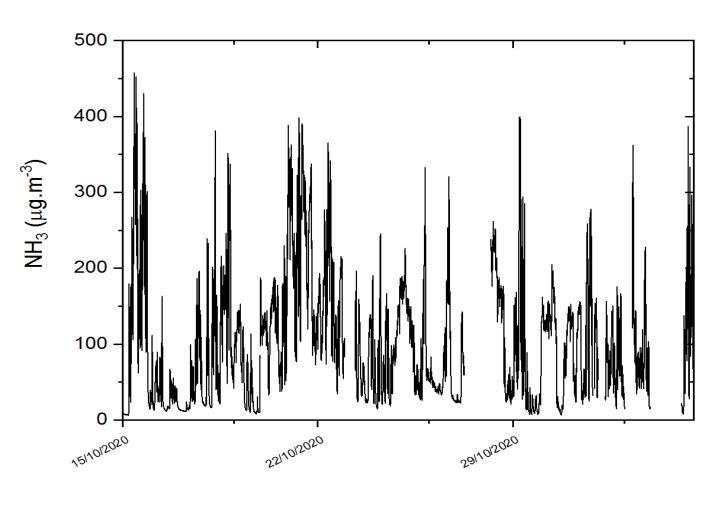

- •Methane and carbon dioxide both air pollutants emitted from agriculture
- •Tracer does not interact strongly with the surfaces of the landscape (trees/soild/grass)
- •Depletion of NH3 relative to CH4/CO2 may be used to estimate capture by trees
- •Science question will be at this very local scale can concentration measurements give quantitative identification of both the ammonia and greenhouse gas sources above background

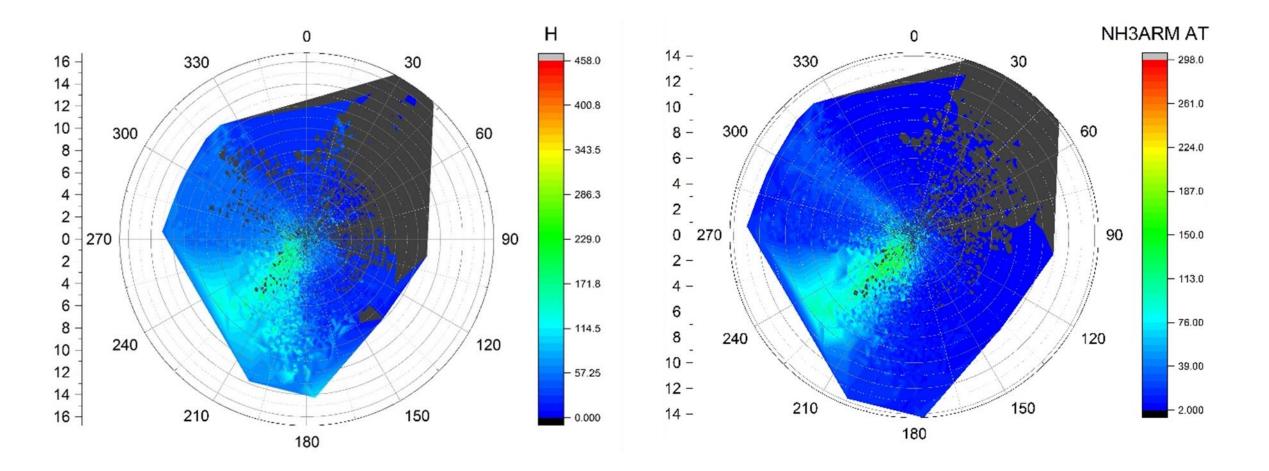

High time resolution measurements of PM


- Visual interpretation of plumes and source apportionment
- Co-emissions and combining with other air pollution source research

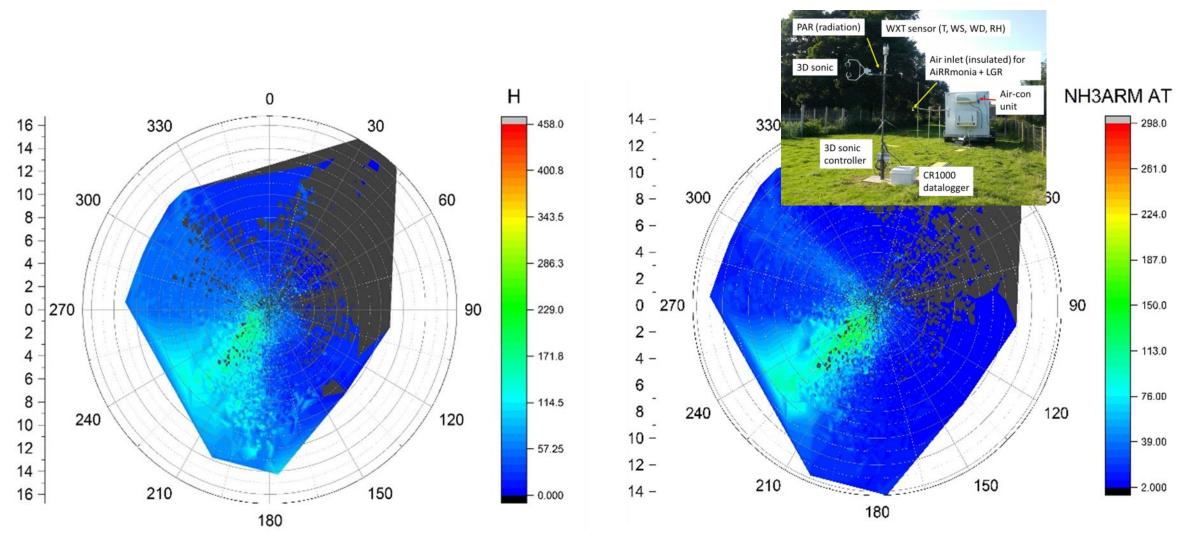

Intensive Campaign at Poultry 3

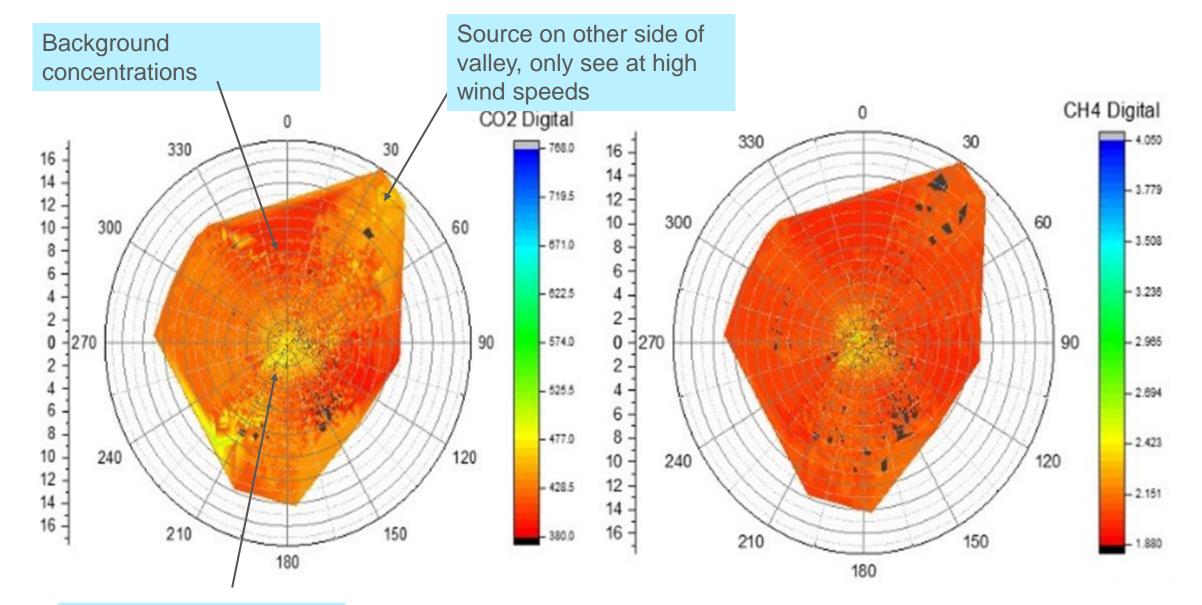



Intensive Campaign at Poultry 3

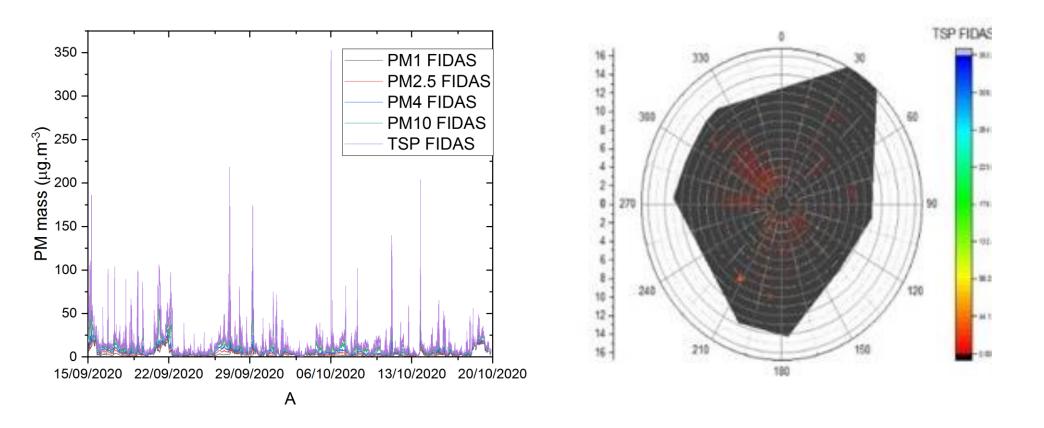

- Source apportionment with the wind rose

Wind rose and ammonia (AiRRmonia data) polar plots


• Site 1 weather station at site 1 before trees (height = 2 m),



Ammonia concentration rose before and after trees


Ammonia concentration rose before and after trees

Poultry 3 shed plume

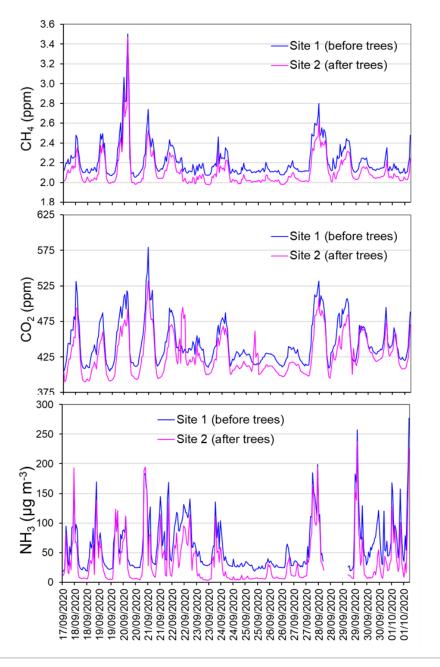
Particulate matter

- Sources of total suspended particulate (TSP) matter did not come from Poultry 3.
- Sources primarily between 270-330°

Paired data example

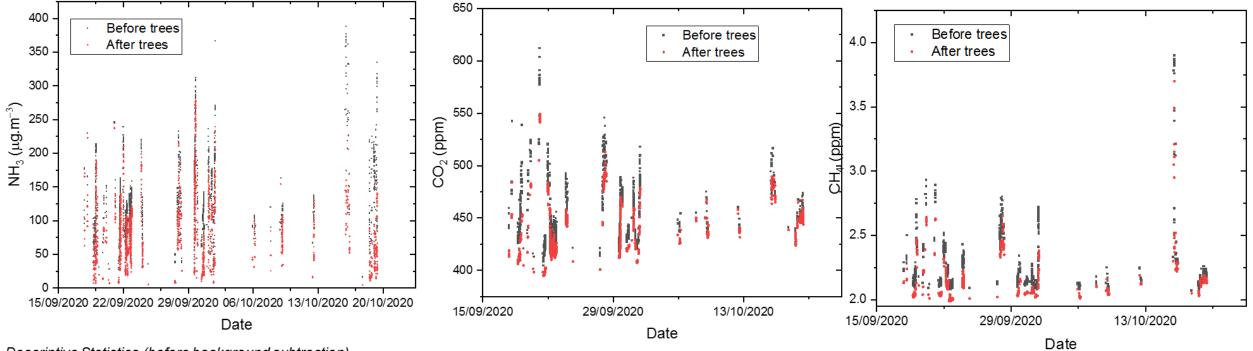
 NH_3 , CO_2 and CH_4 decrease across tree belt.

This is expected as you are diluting the plume from the housing into the atmosphere


Note, regional background concentrations are: $CO_2 \approx 398 \text{ ppm}$

> $CH_4 \approx 1.99 \text{ ppm}$ NH₃ ≈ 0.003 ppm (i.e. 3 ppb)

Therefore to understand the effect of the trees on the concentrations, the fractional loss from the local enhancement needs to be calculated carefully:


- 1. Select data from wind direction of interest (200-250° selected)
- 2. Select data where there is a wind (>2m.s⁻¹ selected)
- 3. Data present from all the relevant instruments

1969 data points out of ~80000

Remaining data!

Descriptive Statistics (before background subtraction)

	N total	Mean	Standard Deviation	SE of mean	Minimum	Median	Maximum
NH3 ARM BT	1969	133.0	52.4	1.2	16.2	123.1	387.8
NH3ARM AT	1969	84.6	47.9	1.1	4.4	79.4	277.9
CO2 BT	1969	447.204	25.724	0.57972	404.54	437.45	612.1
CO2 AT	1969	430.264	24.382	0.54948	394.69	421.64	549.1

Summary of findings

- NH₃ concentration reduction across trees: 38±20%
- Estimate from CO₂ tracer ratio method is that of the 38% concentration reduction, ~
 6.8% of that reduction was due to recapture by the vegetation, remainder due to dispersion and atmospheric dilution. This compares with the modelled value of 1.6%
- It is noted that this calculation has high uncertainty due to short dataset
- Results with high variability and hence uncertainty
- However dataset is available in combination with meteorology for future high resolution measurement-model comparison.
- MSc student due to start in March will take datasets for a detailed study. I.e. specific days and weather events (e.g. rain stripping and re-emission has a big effect)

Mixed model of measurement techniques

New/innovative farm intervention but standard methods: passive samplers and model validation

Research platform farm testing tools: Reference high resolution measurement and modelling Application as part of farm plan: modelling to check plan

Future Strategies

- Accurate and high-resolution measurements are key to inform policy
- Though instrumentation high cost to purchase, operational costs are not much more that "low cost-low resolution" samplers
- Once traceable and reproducible measurement protocols in place then information from measurements, whatever method is valuable to the farmer, the policy maker and the scientist
- > Accuracy using traceable standards required for all data with associated uncertainties
- Dispersion AND recapture data required for fundamental validation and development of farmtreetoair tool so that users can have confidence in underpinning model parameters and processes.
- Sufficiently accurate concentration data needed to ground truth application of farmtreetoair where required for policymakers. Once operational protocols for more ammonia monitors available, high resolution data at 3 points would be gold standard.
- Where high resolution not available, sufficient numbers of off-line samplers to statistically test the policy intervention against models is needed
- If greenhouse gas emission footprint needed (for other purposes) the carbon dioxide, methane and N₂O should be co-measured

Using Directional Passive Air Samplers (DPAS) to measure poultry NH₃ signals & reduction by trees

Roger Timmis (roger.timmis@environment-agency.gov.uk) Environment Agency

Passive ammonia monitor types and capabilities

CAPABILITY		PASSIVE (UNPOWERED)	
	DIFFUSION	WIND-DRIVEN FLUX	
Small, cheap, easy to deploy	V	V	
Needs no power	V		
Cumulative NH ₃	V		
Resolves directions	×	V	
Usable for farms & ecosystems	V	✔ Through-flow Princip	le
Examples:	<section-header></section-header>	DPAS	MANDE

Directional Passive Air Sampler (DPAS) with Mini ANnular Denuders (MANDEs) in 30° Channels

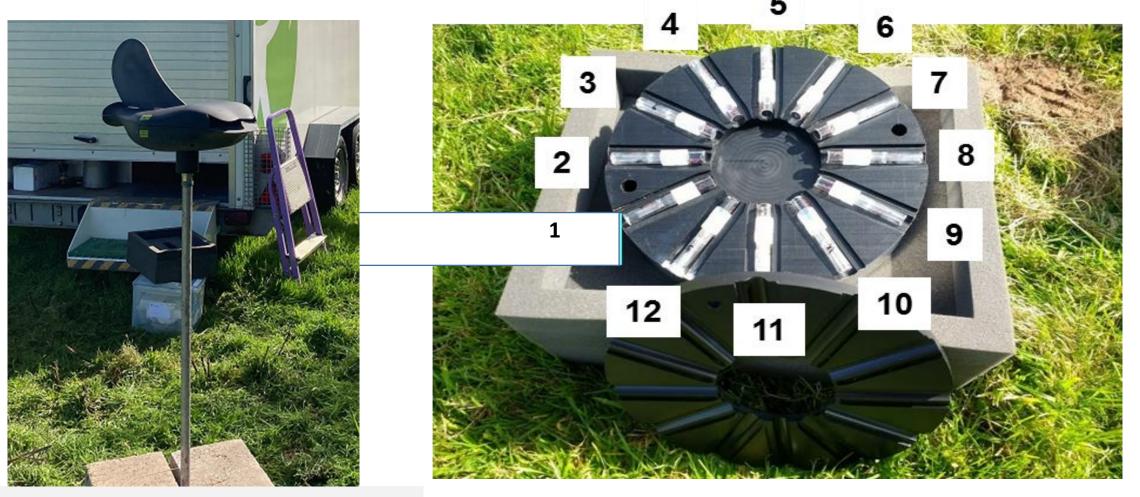


Figure 1. DPAS showing inlet to airway and vane that turns it to face upwind. The inlet is ~1.3 m above ground.

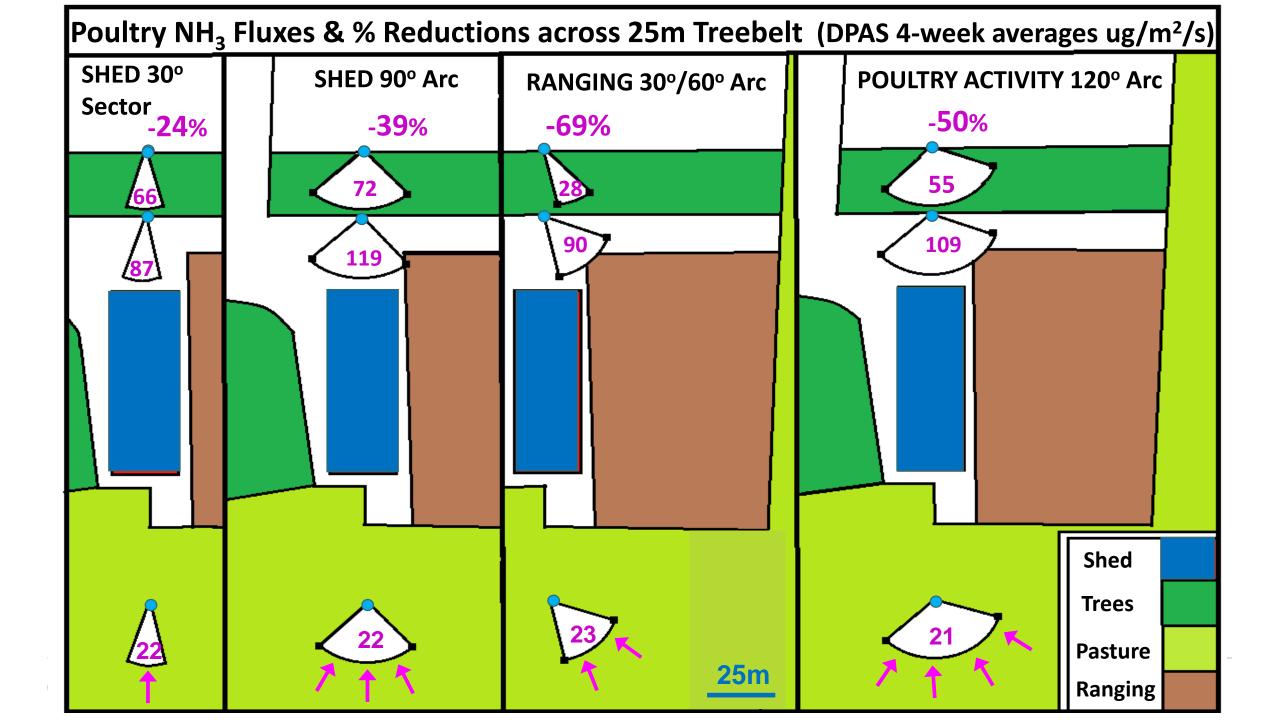
Figure 2. Internal carousel after removal from inside DPAS, with cover (front, bottom) removed to show 12 x 30° sectors with directional channels containing MANDEs

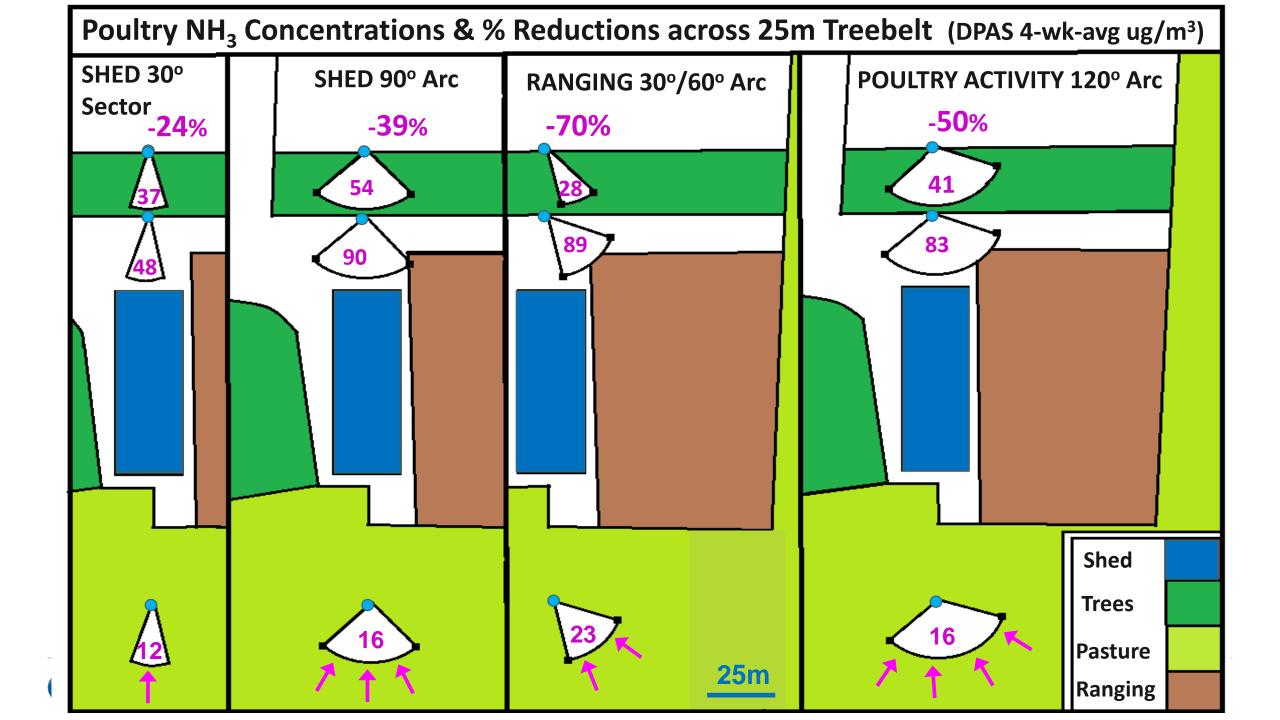
Questions for DPAS-MANDE monitoring of poultry NH₃

 $_{\odot}$ Are NH₃ levels from poultry activities reduced downwind of trees?

- \circ How much of reduction is due to
 - (a) basic plume dispersion with distance?
 - (b) extra tree-induced turbulent mixing and tree-surface deposition?
- Are NH₃ reductions different for different types of poultry source?
 Do tree-belts reduce well-mixed "background" NH₃ from pasture?
 How far away can we detect a poultry farm NH₃ signal?
 Is Numerical Weather Prediction adequate for data interpretation?

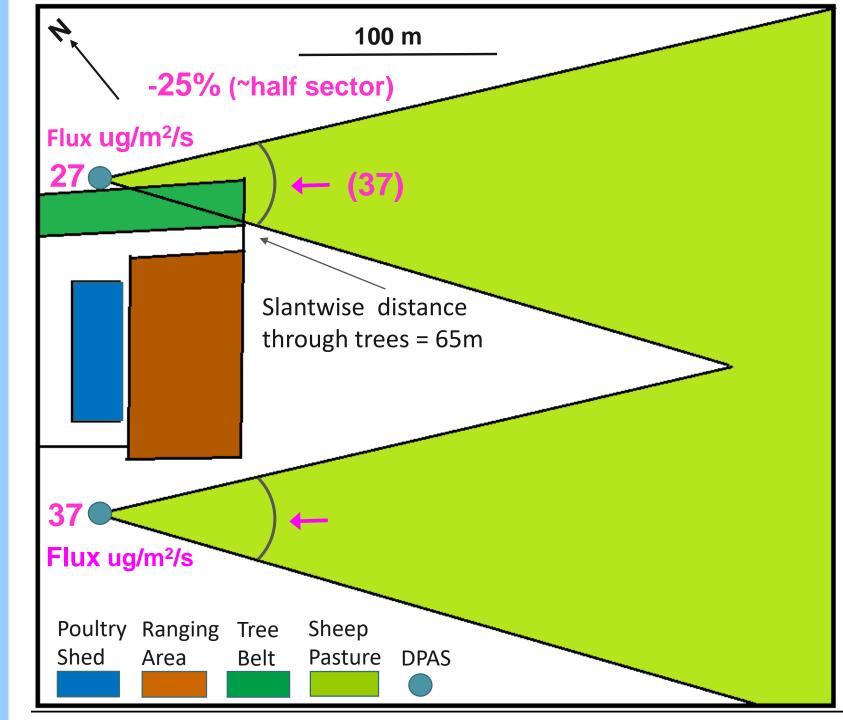
SW & NE poultry farms for DPAS monitoring showing:


- Sheds
- Nos. birds
- Tree belts
- Other farm buildings
- DPASs
- ALPHAs
- Surrounding pasture



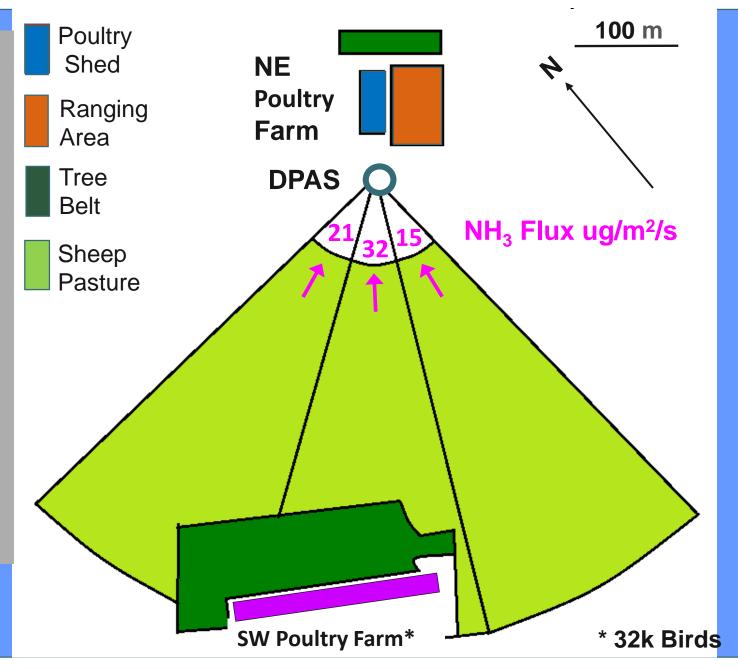
Intensive (NE) Farm showing:

- Sheds/flocks
- Trees
- 6k flock with:
 - 25m tree belt
 - ranging area
- DPASs 1-3:
 - 1 upwind
 - 2 before trees
 - 3 after trees



Ammonia Fluxes at NE Poultry Farm from adjacent 30° Sectors containing

- Pasture only (bottom)
- Pasture + Part of Tree Belt (top)
 (6-week-averages of DPAS samples)


DPAS: % Reductions in fluxes & concentrations by trees (4 or 6-week averages): summary for different transects, emission heights, distances, + normalised to 25m

	% Reductio	n in Flux	% Reduction in Concn.			
Description	Height of NH ₃ emission	Distance through trees	Un-normalised for distance	Normalised to 25m	Un-normalised for distance	Normalised to 25m
Shed 30° Sector	3m (eaves)	25m	-24%	-24% *	-24%	-24% *
Shed 90° Arc	0-3m (variable)	27m	-39%	-36% *	-39%	-36% *
Overall 120° Arc	0-3m (variable)	31m	-50%	-40% *	-50%	-40% *
Ranging 30°/60° Arc	0m (ground)	28m	-69%	-62% *	-70%	-63% *
Background 30° Sector	n/a (well-mixed)	65m	-50%	-19%	-56%	-22% #

* Reduction due to interception by 25m of trees and plume dispersion over 25m

Reduction due to interception by 25m of trees only.

Ammonia Fluxes at **NE Poultry farm** from 30° Sector containing SW **Poultry Farm and** adjoining 30° sectors (4-week-averages of DPAS data)

DPAS NH₃ Concentrations & Fluxes: Comparison of Reductions by Trees using: (a) On-site meteorology (UKCEH) and (b) Numerical Weather Prediction (NWP)

Transect	Source of Wind data	Dura	DurationWindConcentration ug/m³Speed			Flux ug/m²/s						
		Periods	hours	m/s	Up- wind	Before Trees	After Trees	% Reduction	Up- wind	Before Trees	After Trees	% Reduction
Shed 30°	UKCEH	3 + 4	121.1	1.78	12.2	48.4	36.8	-24%	21.8	86.8	66.1	-24%
	NWP	3 + 4	82.6	1.47	21.7	86.4	65.7	-24%	32.0	127.3	96.9	-24%
Ranging Area	UKCEH	1 + 3	97.8	1.01	22.7	88.6	27.7	- 70%	23.0	89.6	28.0	-69%
30°/60°	NWP	3 + 4	105.7	1.24	11.8	94.4	34.2	-64%	14.7	117.2	42.4	-64%

Reductions similar for on-site & NWP (but NWP height/speed lowered from 10m)

Reduction of ammonia by trees: DPAS Summary and Questions

- Non-directional (ALPHA) and directional (DPAS) passive monitors both show NH₃ reductions
- Non-directional ALPHA data can be hard to interpret due to other sources & variable winds
- Directional DPAS data easier to interpret; but needed screening for low-wind-speed issue
- Reductions by 25m trees: Shed: -25% (eaves/overfly); Ranging -60% (ground); Overall -40%
- Reduction of well-mixed background by 25m of trees: -19%; =>benefit of hedges (Shrops.)
- 32k poultry shed with tree belt resolved by DPAS from ~0.5km away; => landscape surveys
- NWP Met. data can be used instead of on-site monitoring, if adjusted for height/roughness
- Can we use DPAS and NWP for other agricultural fugitive emissions, e.g. N₂O, CH₄?
- Use inverse modelling to infer source strength from downwind minus upwind DPAS NH₃?

ART Cumbria field experiment Summary and Conclusions

Christine Braban (<u>chri2@ceh.ac.uk</u>) UKCEH

Farm

Project Objectives

- Targeted approach to monitoring, gathering evidence
- Impact monitoring
- Simple tool for agencies
- Introduce evidence towards improving confidence in tools
- Guidance on best methodological approach to farm assessment

What are we aiming to achieve?

Training	 EA to develop protocol for instrument calibration for these types of deployments; test EA cylinder
Dataset curation	 Cleaned and checked dataset made available for study and measurement-model comparison Data review and lessons learned
Interpretation of concentration patterns	 Can methane and/or CO₂ be used for understanding interaction of NH₃ with trees? Which is better? How useful is it for source apportionment checks cf other methods
Advice for future ELMS measurements	 What is the cost-benefit of deploying high resolution measurements compared to the passive approach Which additional measurements would provide a low cost addition that would also significantly improve evidence value

Project Summary: methodological approaches

ALPHA [®] 2-weekly measurements	Intensive measurements	DPAS directional NH3
Ideal for transects, spatial	Source apportionment	Screening
surveys and model prediction validation	Estimate emissions	
12 x monthly measurements will provide annual mean	Model validation	
	Model process checks	
concentrations – compare with Critical Levels of NH ₃ ,		
and with models (e.g. SCAIL)	Notes:	

Follows BSI/CEN standard methodology

emission fluxes and surface fluxes of ammonia were not measured but would be highly valuable approaches Many other methods for ammonia measurement are available, however there are no NH₃ measurement standards for automatic analysers yet

Project Summary: methodological approaches

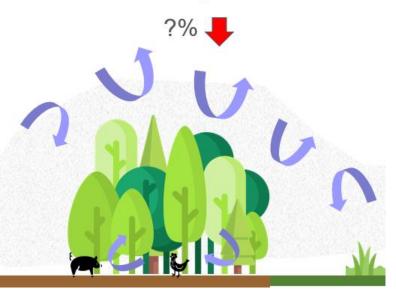
Tree structure and chemistry	Lichen	Nitrogen in vegetation and soil
health of tree belts	local pollution status	nitrogen pathways
nitrogen pathways	local ecology	Pollution swapping
Carbon sequestration	-	Ecosystem change

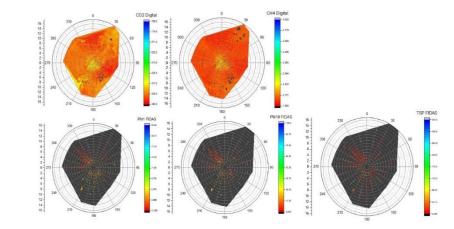
Summary – Concentration difference across treebelt?

	average % NH ₃ concentration difference across treebelt								
Farm	Poultry 1	Dairy 1	Poultry 2	Poultry 4	Poultry 3				
Method ALPHA measurements	97%	73%	58%	56%	42%				
SCAIL (modelled as if no treebelt)	83%‡	66%	46%	78%	29% ^{*‡}				
High resolution measurement NH ₃					45%**				
DPAS					40%**				

+ SCAIL modelling at these farms did not align well with the nearest sampling point to source. The model was around x10 less than the measurements (discussed in main text); * modelled over 3 measurement periods;** Sept-Oct only

2. Increased mixing of the air increases plume dispersion




Enhancing local recapture and dispersion = reducing NH₃ concentrations & deposition to sensitive habitats

Intensive Campaign at Poultry 3 – Recapture by canopy?

	% recapture of Ammonia (NH ₃) by Treebelt									
Recapture calculation method	Poultry 1 Treebelt Depth 100 m	Poultry 2 Treebelt 30 m	Poultry 3 Treebelt 25 m	Poultry 4 Treebelt 65 m	Dairy 1 Treebelt 330 m	Dairy 2 Treebelt 170 m				
MODDAS- OPenFoam*	1.0 (roof fans) 1.6 (side ventilated)	1.3	1.7	0.1	80.6	4.2				
High resolution measurement CO_2 tracer			6.6							
High resolution measurement CH₄ tracer			0.3							

1. Recapture of NH_3 by the canopy

Project Summary

Thank You!

Any questions?

https://www.farmtreestoair.ceh.ac.uk/ART

Acknowledgement

We would like to thank all the farms for permission to carry out the field measurements at their sites, and for their assistance and very helpful input into the project.

2-weekly ammonia measurements

Can concentration measurements give a quantitative measure of ammonia reduction by tree shelterbelts?

Modelling

Question: How can we improve uncertainty, especially through improved LAI by age of treebelt & by species?

Tree measurements

- How above ground N compares to belowground N capture, storage and cycling by different trees and soils?
- > What is the influence of N on carbon capture above and belowground?
- > What is the influence of N input on soil biodiversity, nitrogen leaching and soil GHG?

Intensive measurements

> Experimental design, reference methods, best practice?

Directional passive ammonia measurements

- \blacktriangleright Can we use DPAS and NWP for other agricultural fugitive emissions, e.g. N₂O, CH₄?
- \blacktriangleright Use inverse modelling to infer source strength from downwind minus upwind DPAS NH₃?